Ultra-lightweight human body posture key point CNN model
Ultralight-SimplePose
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,
- Support NCNN mobile terminal deployment
- Based on MXNET(>=1.5.1) GLUON(>=0.7.0) framework
- Top-down strategy: The input image is the person ROI detected by the object detector
- Lightweight mobile terminal human body posture key point model(COCO 17 person_keypoints)
- Detector:https://github.com/dog-qiuqiu/MobileNetv2-YOLOV3
Mobile inference frameworks benchmark (4*ARM_CPU)
Network | Resolution | Inference time (NCNN/Kirin 990) | FLOPS | Weight size | HeatmapAccuracy |
---|---|---|---|---|---|
Ultralight-Nano-SimplePose | W:192 H:256 | ~5.4ms | 0.224BFlops | 2.3MB | 74.3% |
COCO2017 val keypoints metrics evaluate
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ] = 0.518
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ] = 0.816
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets= 20