TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs

EigenGAN

TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs

EigenGAN

Usage

  • Environment
    • Python 3.6

    • TensorFlow 1.15

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the environment with commands below

      conda create -n EigenGAN python=3.6
      
      source activate EigenGAN
      
      conda install opencv scikit-image tqdm tensorflow-gpu=1.15
      
      conda install -c conda-forge oyaml
      
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate EigenGAN
      
  • Data Preparation
    • CelebA-unaligned (10.2GB, higher quality than the aligned data)
      • download the dataset

      • unzip and process the data

        7z x ./data/img_celeba/img_celeba.7z/img_celeba.7z.001 -o./data/img_celeba/

        unzip ./data/img_celeba/annotations.zip -d ./data/img_celeba/

        python

         

         

         

        To finish reading, please visit source site