TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs
EigenGAN
TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs
Usage
- Environment
-
Python 3.6
-
TensorFlow 1.15
-
OpenCV, scikit-image, tqdm, oyaml
-
we recommend Anaconda or Miniconda, then you can create the environment with commands below
conda create -n EigenGAN python=3.6 source activate EigenGAN conda install opencv scikit-image tqdm tensorflow-gpu=1.15 conda install -c conda-forge oyaml
-
NOTICE: if you create a new conda environment, remember to activate it before any other command
source activate EigenGAN
-
- Data Preparation
- CelebA-unaligned (10.2GB, higher quality than the aligned data)
-
download the dataset
-
unzip and process the data
7z x ./data/img_celeba/img_celeba.7z/img_celeba.7z.001 -o./data/img_celeba/
unzip ./data/img_celeba/annotations.zip -d ./data/img_celeba/
python
-
- CelebA-unaligned (10.2GB, higher quality than the aligned data)