Beginner’s Guide To Text Classification Using PyCaret

Introduction Have you ever solved a Machine Learning problem in just one go? Solving a problem using machine learning isn’t straightforward. It involves various steps to come up with an accurate solution. The process/steps to be followed for solving an ml problem is known as ML Pipeline/ML Cycle. ML Pipeline/ ML Cycle (Credits: https://medium.com/analytics-vidhya/machine-learning-development-life-cycle-dfe88c44222e) As shown in the figure, the Machine Learning pipeline consists of different steps like: Understand Problem Statement, Hypothesis Generation, Exploratory Data Analysis, Data Preprocessing, Feature Engineering, […]

Read more

LSTM for Text Classification in Python

This article was published as a part of the Data Science Blogathon With an emerging field of deep learning, performing complex operations has become faster and easier. As you start exploring the field of deep learning, you are definitely going to come across words like Neural networks, recurrent neural networks, LSTM, GRU, etc. This article explains LSTM and its use in Text Classification. So what is LSTM? And how can it be used? What is LSTM? LSTM stands for Long-Short Term […]

Read more

Part 8: Step by Step Guide to Master NLP – Useful Natural Language Processing Tasks

This article was published as a part of the Data Science Blogathon Introduction This article is part of an ongoing blog series on Natural Language Processing (NLP). Up to part-7 of this series, we completed the most useful concepts in NLP. While going away in this series, let’s first discuss some of the useful tasks of NLP so that you have much clarity about what you can do by learning the NLP. After this part, we will start our discussion on […]

Read more

A Hands-On Introduction to Hugging Face’s AutoNLP 101

Hugging Face, founded in 2016, has revolutionized the way people approach Natural Language Processing in this day and age. Based in New York, Hugging Face started out as a chatbot company with its primary focus today on the Transformers library and helping the developers integrate NLP into their own products or services. Hugging Face has made it incredibly easy for an individual to train their data on huge state-of-the-art models only with a couple of lines. Solving NLP, one commit […]

Read more

A Comprehensive Guide to Understand and Implement Text Classification in Python

Improving Text Classification Models While the above framework can be applied to a number of text classification problems, but to achieve a good accuracy some improvements can be done in the overall framework. For example, following are some tips to improve the performance of text classification models and this framework. 1. Text Cleaning : text cleaning can help to reducue the noise present in text data in the form of stopwords, punctuations marks, suffix variations etc. This article can help to understand how […]

Read more

Ultimate Guide to Understand and Implement Natural Language Processing (with codes in Python)

Overview Complete guide on natural language processing (NLP) in Python Learn various techniques for implementing NLP including parsing & text processing Understand how to use NLP for text feature engineering   Introduction According to industry estimates, only 21% of the available data is present in structured form. Data is being generated as we speak, as we tweet, as we send messages on Whatsapp and in various other activities. Majority of this data exists in the textual form, which is highly unstructured […]

Read more

Complete tutorial on Text Classification using Conditional Random Fields Model (in Python)

Introduction The amount of text data being generated in the world is staggering. Google processes more than 40,000 searches EVERY second!  According to a Forbes report, every single minute we send 16 million text messages and post 510,00 comments on Facebook. For a layman, it is difficult to even grasp the sheer magnitude of data out there? News sites and other online media alone generate tons of text content on an hourly basis. Analyzing patterns in that data can become […]

Read more

Natural Language Processing for Beginners: Using TextBlob

Introduction Natural Language Processing (NLP) is an area of growing attention due to increasing number of applications like chatbots, machine translation etc. In some ways, the entire revolution of intelligent machines in based on the ability to understand and interact with humans. I have been exploring NLP for some time now.  My journey started with NLTK library in Python, which was the recommended library to get started at that time. NLTK is a perfect library for education and research, it becomes […]

Read more

Top 6 Open Source Pretrained Models for Text Classification you should use

Introduction We are standing at the intersection of language and machines. I’m fascinated by this topic. Can a machine write as well as Shakespeare? What if a machine could improve my own writing skills? Could a robot interpret a sarcastic remark? I’m sure you’ve asked these questions before. Natural Language Processing (NLP) also aims to answer these questions, and I must say, there has been groundbreaking research done in this field towards bridging the gap between humans and machines. One […]

Read more

6 Practices to enhance the performance of a Text Classification Model

Introduction A few months back, I was working on creating a sentiment classifier for Twitter data. After trying the common approaches, I was still struggling to get good accuracy on the results. Text classification problems and algorithms have been around for a while now. They are widely used for Email Spam Filtering by the likes of Google and Yahoo, for conducting sentiment analysis of twitter data and automatic news categorization in google alerts. However, while dealing with enormous amount of text […]

Read more
1 2