The Top Skills for a Career in Datascience in 2021

Datascience is exploding in popularity due to how it’s tethered to the future of technology, supply-demand for high paying jobs and being on the bleeding edge of corporate culture, startups and innovation! Students from South and East Asia especially can fast track lucrative technology careers with data science even as tech startups are exploding in those areas with increased foreign funding. Think carefully. Would you consider becoming a Data Scientist? According to Coursera: A data scientist might do the following […]

Read more

Implementation of Attention Mechanism for Caption Generation on Transformers using TensorFlow

Overview Learning about the state of the art model that is Transformers. Understand how we can implement Transformers on the already seen image captioning problem using Tensorflow Comparing the results of Transformers vs attention models.   Introduction We have seen that Attention mechanisms (in the previous article) have become an integral part of compelling sequence modeling and transduction models in various tasks (such as image captioning), allowing modeling of dependencies without regard to their distance in the input or output […]

Read more

5 Amazing Deep Learning Frameworks Every Data Scientist Must Know! (with Illustrated Infographic)

Introduction I have been a programmer since before I can remember. I enjoy writing codes from scratch – this helps me understand that topic (or technique) clearly. This approach is especially helpful when we’re learning data science initially. Try to implement a neural network from scratch and you’ll understand a lot of interest things. But do you think this is a good idea when building deep learning models on a real-world dataset? It’s definitely possible if you have days or […]

Read more

Apache Kafka + KSQL + TensorFlow for Data Scientists via Python + Jupyter Notebook

Why would a data scientist use Kafka Jupyter Python KSQL TensorFlow all together in a single notebook? There is an impedance mismatch between model development using Python and its Machine Learning tool stack and a scalable, reliable data platform. The former is what you need for quick and easy prototyping to build analytic models. The latter is what you need to use for data ingestion, preprocessing, model deployment and monitoring at scale. It requires low latency, high throughput, zero data […]

Read more

Visually Explained: How Can Executives Grasp What Programming Is All About?

Quite often, non-technical executives have difficulties understanding what programming, on a very fundamental level, is all about. Because of that knowledge-gap, they tend to hire and overburden experienced data professionals with tasks which they are hopelessly overqualified for. Such as, for example, doing ad-hoc SQL queries on CRM data: “You’re the go-to-guy for all things data, and we need the results for the board meeting tomorrow.” That’s a quite humbling and frustrating experience for anyone who calls himself a Data […]

Read more

Image Recognition in Python with TensorFlow and Keras

Introduction One of the most common utilizations of TensorFlow and Keras is the recognition/classification of images. If you want to learn how to use Keras to classify or recognize images, this article will teach you how. Definitions If you aren’t clear on the basic concepts behind image recognition, it will be difficult to completely understand the rest of this article. So before we proceed any further, let’s take a moment to define some terms. TensorFlow/Keras Credit: commons.wikimedia.org TensorFlow is an […]

Read more

Text Generation with Python and TensorFlow/Keras

Introduction Are you interested in using a neural network to generate text? TensorFlow and Keras can be used for some amazing applications of natural language processing techniques, including the generation of text. In this tutorial, we’ll cover the theory behind text generation using a Recurrent Neural Networks, specifically a Long Short-Term Memory Network, implement this network in Python, and use it to generate some text. Defining Terms To begin with, let’s start by defining our terms. It may prove difficult […]

Read more

Introduction to GANs with Python and TensorFlow

Introduction Generative models are a family of AI architectures whose aim is to create data samples from scratch. They achieve this by capturing the data distributions of the type of things we want to generate. These kind of models are being heavily researched, and there is a huge amount of hype around them. Just look at the chart that shows the numbers of papers published in the field over the past few years: Since 2014, when the first paper on […]

Read more

Tensorflow 2.0: Solving Classification and Regression Problems

After much hype, Google finally released TensorFlow 2.0 which is the latest version of Google’s flagship deep learning platform. A lot of long-awaited features have been introduced in TensorFlow 2.0. This article very briefly covers how you can develop simple classification and regression models using TensorFlow 2.0. Classification with Tensorflow 2.0 If you have ever worked with Keras library, you are in for a treat. TensorFlow 2.0 now uses Keras API as its default library for training classification and regression […]

Read more

Text Classification with BERT Tokenizer and TF 2.0 in Python

This is the 23rd article in my series of articles on Python for NLP. In the previous article of this series, I explained how to perform neural machine translation using seq2seq architecture with Python’s Keras library for deep learning. In this article we will study BERT, which stands for Bidirectional Encoder Representations from Transformers and its application to text classification. BERT is a text representation technique like Word Embeddings. If you have no idea of how word embeddings work, take […]

Read more
1 2