The Model Performance Mismatch Problem (and what to do about it)
What To Do If Model Test Results Are Worse than Training. The procedure when evaluating machine learning models is to fit and evaluate them on training data, then verify that the model has good skill on a held-back test dataset. Often, you will get a very promising performance when evaluating the model on the training dataset and poor performance when evaluating the model on the test set. In this post, you will discover techniques and issues to consider when you […]
Read more