A Hands-On Introduction to Hugging Face’s AutoNLP 101

Hugging Face, founded in 2016, has revolutionized the way people approach Natural Language Processing in this day and age. Based in New York, Hugging Face started out as a chatbot company with its primary focus today on the Transformers library and helping the developers integrate NLP into their own products or services. Hugging Face has made it incredibly easy for an individual to train their data on huge state-of-the-art models only with a couple of lines. Solving NLP, one commit […]

Read more

Introduction to Hugging Face’s Transformers v4.3.0 and its First Automatic Speech Recognition Model – Wav2Vec2

Overview Hugging Face has released Transformers v4.3.0 and it introduces the first Automatic Speech Recognition model to the library: Wav2Vec2 Using one hour of labeled data, Wav2Vec2 outperforms the previous state of the art on the 100-hour subset while using 100 times less labeled data Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data Wav2Vec2 achieves 4.8/8.2 WER Understand Wav2Vec2 implementation using transformers library on audio to text generation   Introduction Transformers has been […]

Read more

Hugging Face Releases New NLP ‘Tokenizers’ Library Version (v0.8.0)

Hugging Face is at the forefront of a lot of updates in the NLP space. They have released one groundbreaking NLP library after another in the last few years. Honestly, I have learned and improved my own NLP skills a lot thanks to the work open-sourced by Hugging Face. And today, they’ve released another big update – a brand new version of their popular Tokenizer library.   A Quick Introduction to Tokenization So, what is tokenization? Tokenization is a crucial […]

Read more