Applied Deep Learning in Python Mini-Course

Last Updated on December 11, 2019 Deep learning is a fascinating field of study and the techniques are achieving world class results in a range of challenging machine learning problems. It can be hard to get started in deep learning. Which library should you use and which techniques should you focus on? In this post you will discover a 14-part crash course into deep learning in Python with the easy to use and powerful Keras library. This mini-course is intended for […]

Read more

Deep Learning Courses

Last Updated on August 19, 2019 It can be difficult to get started in deep learning. Thankfully, a number of universities have opened up their deep learning course material for free, which can be a great jump-start when you are looking to better understand the foundations of deep learning. In this post you will discover the deep learning courses that you can browse and work through to develop and cement your understanding of the field. This is a long post […]

Read more

8 Inspirational Applications of Deep Learning

Last Updated on August 19, 2019 It is hyperbole to say deep learning is achieving state-of-the-art results across a range of difficult problem domains. A fact, but also hyperbole. There is a lot of excitement around artificial intelligence, machine learning and deep learning at the moment. It is also an amazing opportunity to get on on the ground floor of some really powerful tech. I try hard to convince friends, colleagues and students to get started in deep learning and bold statements like the […]

Read more

Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras

Last Updated on August 27, 2020 A powerful and popular recurrent neural network is the long short-term model network or LSTM. It is widely used because the architecture overcomes the vanishing and exposing gradient problem that plagues all recurrent neural networks, allowing very large and very deep networks to be created. Like other recurrent neural networks, LSTM networks maintain state, and the specifics of how this is implemented in Keras framework can be confusing. In this post you will discover […]

Read more

How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

Last Updated on August 27, 2020 Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are notoriously difficult to configure and there are a lot of parameters that need to be set. On top of that, individual models can be very slow to train. In this post you will discover how you can use the grid search capability from the scikit-learn python machine learning library to tune the hyperparameters of Keras deep learning models. After […]

Read more

5 Step Life-Cycle for Neural Network Models in Keras

Last Updated on August 27, 2020 Deep learning neural networks are very easy to create and evaluate in Python with Keras, but you must follow a strict model life-cycle. In this post you will discover the step-by-step life-cycle for creating, training and evaluating deep learning neural networks in Keras and how to make predictions with a trained model. After reading this post you will know: How to define, compile, fit and evaluate a deep learning neural network in Keras. How […]

Read more

What You Know About Deep Learning Is A Lie

Last Updated on August 19, 2019 Getting started in deep learning is a struggle. It’s a struggle because deep learning is taught by academics, for academics. If you’re a developer (or practitioner), you’re different. You want results. The way practitioners learn new technologies is by developing prototypes that deliver value quickly. This is a top-down approach to learning, but it is not the way that deep learning is taught. There is another way. A way that works for top-down practitioners like you. In this […]

Read more

How to Evaluate the Skill of Deep Learning Models

Last Updated on August 14, 2020 I often see practitioners expressing confusion about how to evaluate a deep learning model. This is often obvious from questions like: What random seed should I use? Do I need a random seed? Why don’t I get the same results on subsequent runs? In this post, you will discover the procedure that you can use to evaluate deep learning models and the rationale for using it. You will also discover useful related statistics that […]

Read more

How to Get Reproducible Results with Keras

Last Updated on August 19, 2019 Neural network algorithms are stochastic. This means they make use of randomness, such as initializing to random weights, and in turn the same network trained on the same data can produce different results. This can be confusing to beginners as the algorithm appears unstable, and in fact they are by design. The random initialization allows the network to learn a good approximation for the function being learned. Nevertheless, there are times when you need […]

Read more

A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch Size

Last Updated on August 19, 2019 Stochastic gradient descent is the dominant method used to train deep learning models. There are three main variants of gradient descent and it can be confusing which one to use. In this post, you will discover the one type of gradient descent you should use in general and how to configure it. After completing this post, you will know: What gradient descent is and how it works from a high level. What batch, stochastic, […]

Read more
1 7 8 9 10 11 12