Why Initialize a Neural Network with Random Weights?

Last Updated on March 26, 2020 The weights of artificial neural networks must be initialized to small random numbers. This is because this is an expectation of the stochastic optimization algorithm used to train the model, called stochastic gradient descent. To understand this approach to problem solving, you must first understand the role of nondeterministic and randomized algorithms as well as the need for stochastic optimization algorithms to harness randomness in their search process. In this post, you will discover […]

Read more

Practical Deep Learning for Coders (Review)

Last Updated on November 1, 2019 Practical deep learning is a challenging subject in which to get started. It is often taught in a bottom-up manner, requiring that you first get familiar with linear algebra, calculus, and mathematical optimization before eventually learning the neural network techniques. This can take years, and most of the background theory will not help you to get good results, fast. Instead, a top-down approach can be used where first you learn how to get results […]

Read more

3 Levels of Deep Learning Competence

Last Updated on August 19, 2019 Deep learning is not a magic bullet, but the techniques have shown to be highly effective in a large number of very challenging problem domains. This means that there is a ton of demand by businesses for effective deep learning practitioners. The problem is, how can the average business differentiate between good and bad practitioners? As a deep learning practitioner, how can you best demonstrate that you can deliver skillful deep learning models? In […]

Read more

How to Calculate Precision, Recall, F1, and More for Deep Learning Models

Last Updated on August 27, 2020 Once you fit a deep learning neural network model, you must evaluate its performance on a test dataset. This is critical, as the reported performance allows you to both choose between candidate models and to communicate to stakeholders about how good the model is at solving the problem. The Keras deep learning API model is very limited in terms of the metrics that you can use to report the model performance. I am frequently […]

Read more

How to Save and Load Your Keras Deep Learning Model

Last Updated on August 27, 2020 Keras is a simple and powerful Python library for deep learning. Given that deep learning models can take hours, days and even weeks to train, it is important to know how to save and load them from disk. In this post, you will discover how you can save your Keras models to file and load them up again to make predictions. After reading this tutorial you will know: How to save model weights and model […]

Read more

Your First Deep Learning Project in Python with Keras Step-By-Step

Last Updated on September 15, 2020 Keras is a powerful and easy-to-use free open source Python library for developing and evaluating deep learning models. It wraps the efficient numerical computation libraries Theano and TensorFlow and allows you to define and train neural network models in just a few lines of code. In this tutorial, you will discover how to create your first deep learning neural network model in Python using Keras. Kick-start your project with my new book Deep Learning […]

Read more

What is Deep Learning?

Last Updated on August 14, 2020 Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain called artificial neural networks. If you are just starting out in the field of deep learning or you had some experience with neural networks some time ago, you may be confused. I know I was confused initially and so were many of my colleagues and friends who learned and used neural networks in the 1990s […]

Read more

3 Ways to Encode Categorical Variables for Deep Learning

Last Updated on August 27, 2020 Machine learning and deep learning models, like those in Keras, require all input and output variables to be numeric. This means that if your data contains categorical data, you must encode it to numbers before you can fit and evaluate a model. The two most popular techniques are an integer encoding and a one hot encoding, although a newer technique called learned embedding may provide a useful middle ground between these two methods. In […]

Read more

TensorFlow 2 Tutorial: Get Started in Deep Learning With tf.keras

Last Updated on August 27, 2020 Predictive modeling with deep learning is a skill that modern developers need to know. TensorFlow is the premier open-source deep learning framework developed and maintained by Google. Although using TensorFlow directly can be challenging, the modern tf.keras API beings the simplicity and ease of use of Keras to the TensorFlow project. Using tf.keras allows you to design, fit, evaluate, and use deep learning models to make predictions in just a few lines of code. […]

Read more

Neural Networks are Function Approximation Algorithms

Last Updated on August 27, 2020 Supervised learning in machine learning can be described in terms of function approximation. Given a dataset comprised of inputs and outputs, we assume that there is an unknown underlying function that is consistent in mapping inputs to outputs in the target domain and resulted in the dataset. We then use supervised learning algorithms to approximate this function. Neural networks are an example of a supervised machine learning algorithm that is perhaps best understood in […]

Read more
1 9 10 11 12