9 Ways to Get Help with Deep Learning in Keras

Last Updated on August 19, 2019 Keras is a Python deep learning library that can use the efficient Theano or TensorFlow symbolic math libraries as a backend. Keras is so easy to use that you can develop your first Multilayer Perceptron, Convolutional Neural Network, or LSTM Recurrent Neural Network in minutes. You may have technical questions when you get started using Keras. You may need a little help. In this post, you will discover 9 places where you can ask […]

Read more

10 Command Line Recipes for Deep Learning on Amazon Web Services

Last Updated on August 19, 2019 Running large deep learning processes on Amazon Web Services EC2 is a cheap and effective way to learn and develop models. For just a few dollars you can get access to tens of gigabytes of RAM, tens of CPU cores, and multiple GPUs. I highly recommend it. If you are new to EC2 or the Linux command line, there are a suite of commands that you will find invaluable when running your deep learning […]

Read more

How to Use Metrics for Deep Learning with Keras in Python

Last Updated on August 27, 2020 The Keras library provides a way to calculate and report on a suite of standard metrics when training deep learning models. In addition to offering standard metrics for classification and regression problems, Keras also allows you to define and report on your own custom metrics when training deep learning models. This is particularly useful if you want to keep track of a performance measure that better captures the skill of your model during training. […]

Read more

How to Use the Keras Functional API for Deep Learning

Last Updated on May 28, 2020 The Keras Python library makes creating deep learning models fast and easy. The sequential API allows you to create models layer-by-layer for most problems. It is limited in that it does not allow you to create models that share layers or have multiple inputs or outputs. The functional API in Keras is an alternate way of creating models that offers a lot more flexibility, including creating more complex models. In this tutorial, you will […]

Read more

How to Use The Pre-Trained VGG Model to Classify Objects in Photographs

Last Updated on August 19, 2019 Convolutional neural networks are now capable of outperforming humans on some computer vision tasks, such as classifying images. That is, given a photograph of an object, answer the question as to which of 1,000 specific objects the photograph shows. A competition-winning model for this task is the VGG model by researchers at Oxford. What is important about this model, besides its capability of classifying objects in photographs, is that the model weights are freely […]

Read more

How to Visualize a Deep Learning Neural Network Model in Keras

Last Updated on September 11, 2019 The Keras Python deep learning library provides tools to visualize and better understand your neural network models. In this tutorial, you will discover exactly how to summarize and visualize your deep learning models in Keras. After completing this tutorial, you will know: How to create a textual summary of your deep learning model. How to create a graph plot of your deep learning model. Best practice tips when developing deep learning models in Keras. […]

Read more

How to Run Deep Learning Experiments on a Linux Server

Last Updated on August 19, 2019 After you write your code, you must run your deep learning experiments on large computers with lots of RAM, CPU, and GPU resources, often a Linux server in the cloud. Recently, I was asked the question: “How do you run your deep learning experiments?” This is a good nuts-and-bolts question that I love answering. In this post, you will discover the approach, commands, and scripts that I use to run deep learning experiments on […]

Read more

How to Make Predictions with Keras

Last Updated on August 27, 2020 Once you choose and fit a final deep learning model in Keras, you can use it to make predictions on new data instances. There is some confusion amongst beginners about how exactly to do this. I often see questions such as: How do I make predictions with my model in Keras? In this tutorial, you will discover exactly how you can make classification and regression predictions with a finalized deep learning model with the […]

Read more

Difference Between a Batch and an Epoch in a Neural Network

Last Updated on October 26, 2019 Stochastic gradient descent is a learning algorithm that has a number of hyperparameters. Two hyperparameters that often confuse beginners are the batch size and number of epochs. They are both integer values and seem to do the same thing. In this post, you will discover the difference between batches and epochs in stochastic gradient descent. After reading this post, you will know: Stochastic gradient descent is an iterative learning algorithm that uses a training […]

Read more

When to Use MLP, CNN, and RNN Neural Networks

Last Updated on August 19, 2019 What neural network is appropriate for your predictive modeling problem? It can be difficult for a beginner to the field of deep learning to know what type of network to use. There are so many types of networks to choose from and new methods being published and discussed every day. To make things worse, most neural networks are flexible enough that they work (make a prediction) even when used with the wrong type of […]

Read more
1 8 9 10 11 12