Automating Outlier Detection via Meta-Learning
Given an unsupervised outlier detection (OD) task on a new dataset, how can we automatically select a good outlier detection method and its hyperparameter(s) (collectively called a model)? Thus far, model selection for OD has been a “black art”; as any model evaluation is infeasible due to the lack of (i) hold-out data with labels, and (ii) a universal objective function… In this work, we develop the first principled data-driven approach to model selection for OD, called MetaOD, based on […]
Read more