Rotate Yolov5 with adjustments to enable rotate prediction boxes

This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

The codes are based on Ultralytics/yolov5, and several functions are added and modified to enable rotate prediction boxes.

The modifications compared with Ultralytics/yolov5 and their brief descriptions are summarized below:

  • data/rotate_ucas.yaml : Exemplar UCAS-AOD dataset to test the effects of rotate boxes

  • data/images/UCAS-AOD : For the inference of rotate-yolov5s-ucas.pt

  • models/common.py :

    3.1. class Rotate_NMS : Non-Maximum Suppression (NMS) module for Rotate Boxes

    3.2. class Rotate_AutoShape : Rotate Version of Original AutoShape, input-robust polygon model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and Rotate_NMS

    3.3. class Rotate_Detections : Rotate detections class for Rotate-YOLOv5 inference results

  • models/rotate_yolov5s_ucas.yaml : Configuration file of rotate yolov5s for exemplar UCAS-AOD dataset

  • models/yolo.py :

    5.1. class

     

     

     

    To finish reading, please visit source site