RLMeta – a light-weight flexible framework for Distributed Reinforcement Learning Research

rlmeta – a flexible lightweight research framework for Distributed
Reinforcement Learning based on PyTorch
andmoolib
Installation
To build from source, please install PyTorch
first,
and then run the commands below.
$ git clone https://github.com/facebookresearch/rlmeta
$ cd rlmeta
$ git submodule sync && git submodule update --init --recursive
$ pip install -e .
Run an Example
To run the example for Atari Pong game with PPO algorithm:
$ cd examples/atari/ppo
$ python atari_ppo.py env="PongNoFrameskip-v4" num_epochs=20
We are using hydra
to define