Python Library for Model Interpretation/Explanations

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction).
The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive “black boxes” both for researchers and practioners. The project is still in beta phase.
Install Skater
pip
Option 1: without rule lists and without deepinterpreter
pip install -U