In the previous two installments, we had understood in detail the common text terms in Natural Language Processing (NLP), what are topics, what is topic modeling, why it is required, its uses, types of models and dwelled deep into one of the important techniques called Latent Dirichlet Allocation (LDA).
In this last leg of the Topic Modeling and LDA series, we shall see how to extract topics through the LDA method in Python using the packages gensim and sklearn.
Table of Contents
Data and Steps for Working with Text
The Work Flow for executing LDA in Python
Implementation of LDA using gensim
Parameters for LDA model in gensim
Implementation of LDA using sklearn
Parameters for LDA model in sklearn
Data and Steps for Working with Text
We will apply LDA on the corpus that we have seen in the