Dialogue as Dataflow: A new approach to conversational AI

By the Semantic Machines research team “Easier said than done.” These four words reflect the promise of conversational AI. It takes just seconds to ask When are Megan and I both free? but much longer to find out manually from a calendar. Indeed, almost everything we do with technology can feel like a long path to a short goal. At Microsoft Semantic Machines, we’re working to bridge this gap—to build conversational AI experiences where you can focus on saying what […]

Read more

Novel View Synthesis from Single Images via Point Cloud Transformation

In this paper the argument is made that for true novel view synthesis of objects, where the object can be synthesized from any viewpoint, an explicit 3D shape representation isdesired. Our method estimates point clouds to capture the geometry of the object, which can be freely rotated into the desired view and then projected into a new image… This image, however, is sparse by nature and hence this coarse view is used as the input of an image completion network […]

Read more

ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis

Manually authoring 3D shapes is difficult and time consuming; generative models of 3D shapes offer compelling alternatives. Procedural representations are one such possibility: they offer high-quality and editable results but are difficult to author and often produce outputs with limited diversity… On the other extreme are deep generative models: given enough data, they can learn to generate any class of shape but their outputs have artifacts and the representation is not editable. In this paper, we take a step towards […]

Read more

Understanding Effects of Editing Tweets for News Sharing by Media Accounts through a Causal Inference Framework

To reach a broader audience and optimize traffic toward news articles, media outlets commonly run social media accounts and share their content with a short text summary. Despite its importance of writing a compelling message in sharing articles, research community does not own a sufficient level of understanding of what kinds of editing strategies are effective in promoting audience engagement… In this study, we aim to fill the gap by analyzing the current practices of media outlets using a data-driven […]

Read more

Image Captioning with Attention for Smart Local Tourism using EfficientNet

Smart systems have been massively developed to help humans in various tasks. Deep Learning technologies push even further in creating accurate assistant systems due to the explosion of data lakes… One of the smart system tasks is to disseminate users needed information. This is crucial in the tourism sector to promote local tourism destinations. In this research, we design a model of local tourism specific image captioning, which later will support the development of AI-powered systems that assist various users. […]

Read more

S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

Deep Metric Learning (DML) provides a crucial tool for visual similarity and zero-shot retrieval applications by learning generalizing embedding spaces, although recent work in DML has shown strong performance saturation across training objectives. However, generalization capacity is known to scale with the embedding space dimensionality… Unfortunately, high dimensional embeddings also create higher retrieval cost for downstream applications. To remedy this, we propose S2SD – Simultaneous Similarity-based Self-distillation. S2SD extends DML with knowledge distillation from auxiliary, high-dimensional embedding and feature spaces […]

Read more

Large Norms of CNN Layers Do Not Hurt Adversarial Robustness

Since the Lipschitz properties of convolutional neural network (CNN) are widely considered to be related to adversarial robustness, we theoretically characterize the $ell_1$ norm and $ell_infty$ norm of 2D multi-channel convolutional layers and provide efficient methods to compute the exact $ell_1$ norm and $ell_infty$ norm. Based on our theorem, we propose a novel regularization method termed norm decay, which can effectively reduce the norms of CNN layers… Experiments show that norm-regularization methods, including norm decay, weight decay, and singular value […]

Read more

Real-Time Streaming Anomaly Detection in Dynamic Graphs

Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges… In this work, we propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges, such as lockstep behavior, including denial of service attacks in network traffic data. We further propose MIDAS-F, to […]

Read more

MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

In this paper, we introduce a simple yet effective approach that can boost the vanilla ResNet-50 to 80%+ Top-1 accuracy on ImageNet without any tricks. Generally, our method is based on the recently proposed MEAL, i.e., ensemble knowledge distillation via discriminators… We further simplify it through 1) adopting the similarity loss and discriminator only on the final outputs and 2) using the average of softmax probabilities from all teacher ensembles as the stronger supervision for distillation. One crucial perspective of […]

Read more

Evaluating Interactive Summarization: an Expansion-Based Framework

Allowing users to interact with multi-document summarizers is a promising direction towards improving and customizing summary results. Different ideas for interactive summarization have been proposed in previous work but these solutions are highly divergent and incomparable… In this paper, we develop an end-to-end evaluation framework for expansion-based interactive summarization, which considers the accumulating information along an interactive session. Our framework includes a procedure of collecting real user sessions and evaluation measures relying on standards, but adapted to reflect interaction. All […]

Read more
1 908 909 910 911 912 921