PMVOS: Pixel-Level Matching-Based Video Object Segmentation

Semi-supervised video object segmentation (VOS) aims to segment arbitrary target objects in video when the ground truth segmentation mask of the initial frame is provided. Due to this limitation of using prior knowledge about the target object, feature matching, which compares template features representing the target object with input features, is an essential step… Recently, pixel-level matching (PM), which matches every pixel in template features and input features, has been widely used for feature matching because of its high performance. […]

Read more

Face Sketch Synthesis with Style Transfer using Pyramid Column Feature

In this paper, we propose a novel framework based on deep neural networks for face sketch synthesis from a photo. Imitating the process of how artists draw sketches, our framework synthesizes face sketches in a cascaded manner… A content image is first generated that outlines the shape of the face and the key facial features. Textures and shadings are then added to enrich the details of the sketch. We utilize a fully convolutional neural network (FCNN) to create the content […]

Read more

Residual Spatial Attention Network for Retinal Vessel Segmentation

Reliable segmentation of retinal vessels can be employed as a way of monitoring and diagnosing certain diseases, such as diabetes and hypertension, as they affect the retinal vascular structure. In this work, we propose the Residual Spatial Attention Network (RSAN) for retinal vessel segmentation… RSAN employs a modified residual block structure that integrates DropBlock, which can not only be utilized to construct deep networks to extract more complex vascular features, but can also effectively alleviate the overfitting. Moreover, in order […]

Read more

Identification of Abnormal States in Videos of Ants Undergoing Social Phase Change

Biology is both an important application area and a source of motivation for development of advanced machine learning techniques. Although much attention has been paid to large and complex data sets resulting from high-throughput sequencing, advances in high-quality video recording technology have begun to generate similarly rich data sets requiring sophisticated techniques from both computer vision and time-series analysis… Moreover, just as studying gene expression patterns in one organism can reveal general principles that apply to other organisms, the study […]

Read more

Efficient Certification of Spatial Robustness

Recent work has exposed the vulnerability of computer vision models to spatial transformations. Due to the widespread usage of such models in safety-critical applications, it is crucial to quantify their robustness against spatial transformations… However, existing work only provides empirical quantification of spatial robustness via adversarial attacks, which lack provable guarantees. In this work, we propose novel convex relaxations, which enable us, for the first time, to provide a certificate of robustness against spatial transformations. Our convex relaxations are model-agnostic […]

Read more

A Detailed Study of Self Supervised Contrastive Loss and Supervised Contrastive Loss

Introduction Supervised Contrastive Learning paper claims a big deal about supervised learning and cross-entropy loss vs supervised contrastive loss for better image representation and classification tasks. Let’s go in-depth in this paper what is about. Claim actually close to 1% improvement on image net data set¹. Architecture wise, its a very simple network resnet 50 having a 128-dimensional head. If you want you can add a few more layers as well. Architecture and training process from the paper Codeself.encoder = […]

Read more

MStream: Fast Streaming Multi-Aspect Group Anomaly Detection

Given a stream of entries in a multi-aspect data setting i.e., entries having multiple dimensions, how can we detect anomalous activities? For example, in the intrusion detection setting, existing work seeks to detect anomalous events or edges in dynamic graph streams, but this does not allow us to take into account additional attributes of each entry… Our work aims to define a streaming multi-aspect data anomaly detection framework, termed MStream, which can detect unusual group anomalies as they occur, in […]

Read more

Intrusion Detection for Cyber-Physical Systems using Generative Adversarial Networks in Fog Environment

Cyber-attacks on cyber-physical systems (CPSs) can lead to sensing and actuation misbehavior, severe damages to physical objects, and safety risks. Machine learning algorithms have been proposed for hindering cyber-attacks on CPSs, but the absence of labeled data from novel attacks makes their detection quite challenging… In this context, Generative Adversarial Networks (GANs) are a promising unsupervised approach to detect cyber-attacks by implicitly modeling the system. However, the detection of cyber-attacks on CPSs has strict latency requirements, since the attacks need […]

Read more

FarsTail: A Persian Natural Language Inference Dataset

Natural language inference (NLI) is known as one of the central tasks in natural language processing (NLP) which encapsulates many fundamental aspects of language understanding. With the considerable achievements of data-hungry deep learning methods in NLP tasks, a great amount of effort has been devoted to develop more diverse datasets for different languages… In this paper, we present a new dataset for the NLI task in the Persian language, also known as Farsi, which is one of the dominant languages […]

Read more

Progressive Semantic-Aware Style Transformation for Blind Face Restoration

Face restoration is important in face image processing, and has been widely studied in recent years. However, previous works often fail to generate plausible high quality (HQ) results for real-world low quality (LQ) face images… In this paper, we propose a new progressive semantic-aware style transformation framework, named PSFR-GAN, for face restoration. Specifically, instead of using an encoder-decoder framework as previous methods, we formulate the restoration of LQ face images as a multi-scale progressive restoration procedure through semantic-aware style transformation. […]

Read more
1 886 887 888 889 890 912