How to Implement GAN Hacks in Keras to Train Stable Models
Last Updated on July 12, 2019 Generative Adversarial Networks, or GANs, are challenging to train. This is because the architecture involves both a generator and a discriminator model that compete in a zero-sum game. It means that improvements to one model come at the cost of a degrading of performance in the other model. The result is a very unstable training process that can often lead to failure, e.g. a generator that generates the same image all the time or […]
Read more