A Gentle Introduction to 1×1 Convolutions to Manage Model Complexity
Last Updated on July 5, 2019 Pooling can be used to down sample the content of feature maps, reducing their width and height whilst maintaining their salient features. A problem with deep convolutional neural networks is that the number of feature maps often increases with the depth of the network. This problem can result in a dramatic increase in the number of parameters and computation required when larger filter sizes are used, such as 5×5 and 7×7. To address this […]
Read more