One-Class Classification Algorithms for Imbalanced Datasets
Last Updated on August 21, 2020 Outliers or anomalies are rare examples that do not fit in with the rest of the data. Identifying outliers in data is referred to as outlier or anomaly detection and a subfield of machine learning focused on this problem is referred to as one-class classification. These are unsupervised learning algorithms that attempt to model “normal” examples in order to classify new examples as either normal or abnormal (e.g. outliers). One-class classification algorithms can be […]
Read more