Encoder-Decoder Models for Text Summarization in Keras
Last Updated on August 7, 2019 Text summarization is a problem in natural language processing of creating a short, accurate, and fluent summary of a source document. The Encoder-Decoder recurrent neural network architecture developed for machine translation has proven effective when applied to the problem of text summarization. It can be difficult to apply this architecture in the Keras deep learning library, given some of the flexibility sacrificed to make the library clean, simple, and easy to use. In this […]
Read more