A Gentle Introduction to Padding and Stride for Convolutional Neural Networks
Last Updated on August 16, 2019 The convolutional layer in convolutional neural networks systematically applies filters to an input and creates output feature maps. Although the convolutional layer is very simple, it is capable of achieving sophisticated and impressive results. Nevertheless, it can be challenging to develop an intuition for how the shape of the filters impacts the shape of the output feature map and how related configuration hyperparameters such as padding and stride should be configured. In this tutorial, […]
Read more