A Gentle Introduction to Dropout for Regularizing Deep Neural Networks
Last Updated on August 6, 2019 Deep learning neural networks are likely to quickly overfit a training dataset with few examples. Ensembles of neural networks with different model configurations are known to reduce overfitting, but require the additional computational expense of training and maintaining multiple models. A single model can be used to simulate having a large number of different network architectures by randomly dropping out nodes during training. This is called dropout and offers a very computationally cheap and […]
Read more