Combined Algorithm Selection and Hyperparameter Optimization (CASH Optimization)
Machine learning model selection and configuration may be the biggest challenge in applied machine learning. Controlled experiments must be performed in order to discover what works best for a given classification or regression predictive modeling task. This can feel overwhelming given the large number of data preparation schemes, learning algorithms, and model hyperparameters that could be considered. The common approach is to use a shortcut, such as using a popular algorithm or testing a small number of algorithms with default […]
Read more