Attribution Preservation in Network Compression for Reliable Network Interpretation
Neural networks embedded in safety-sensitive applications such as self-driving cars and wearable health monitors rely on two important techniques: input attribution for hindsight analysis and network compression to reduce its size for edge-computing. In this paper, we show that these seemingly unrelated techniques conflict with each other as network compression deforms the produced attributions, which could lead to dire consequences for mission-critical applications… This phenomenon arises due to the fact that conventional network compression methods only preserve the predictions of […]
Read more