The 25 Best Data Science and Machine Learning GitHub Repositories from 2018

Introduction What’s the best platform for hosting your code, collaborating with team members, and also acts as an online resume to showcase your coding skills? Ask any data scientist, and they’ll point you towards GitHub. It has been a truly revolutionary platform in recent years and has changed the landscape of how we host and even do coding. But that’s not all. It acts as a learning tool as well. How, you ask? I’ll give you a hint – open […]

Read more

5 Amazing Deep Learning Frameworks Every Data Scientist Must Know! (with Illustrated Infographic)

Introduction I have been a programmer since before I can remember. I enjoy writing codes from scratch – this helps me understand that topic (or technique) clearly. This approach is especially helpful when we’re learning data science initially. Try to implement a neural network from scratch and you’ll understand a lot of interest things. But do you think this is a good idea when building deep learning models on a real-world dataset? It’s definitely possible if you have days or […]

Read more

Learn how to Build your own Speech-to-Text Model (using Python)

Overview Learn how to build your very own speech-to-text model using Python in this article The ability to weave deep learning skills with NLP is a coveted one in the industry; add this to your skillset today We will use a real-world dataset and build this speech-to-text model so get ready to use your Python skills!   Introduction “Hey Google. What’s the weather like today?” This will sound familiar to anyone who has owned a smartphone in the last decade. […]

Read more

A Complete List of Important Natural Language Processing Frameworks you should Know (NLP Infographic)

Overview Here’s a list of the most important Natural Language Processing (NLP) frameworks you need to know in the last two years From Google AI’s Transformer to Facebook Research’s XLM/mBERT, we chart the rise of NLP through the lens of these seismic breakthroughs   Introduction Have you heard about the latest Natural Language Processing framework that was released recently? I don’t blame you if you’re still catching up with the superb StanfordNLP library or the PyTorch-Transformers framework! There has been […]

Read more

2019 In-Review and Trends for 2020 – A Technical Overview of Machine Learning and Deep Learning!

Overview A comprehensive look at the top machine learning highlights from 2019, including an exhaustive dive into NLP frameworks Check out the machine learning trends in 2020 – and hear from top experts like Sudalai Rajkumar and Dat Tran!   Introduction 2020 is almost upon us! It’s time to welcome the new year with a splash of machine learning sprinkled into our brand new resolutions. Machine learning will continue to be at the heart of what we do and how […]

Read more

Hugging Face Releases New NLP ‘Tokenizers’ Library Version (v0.8.0)

Hugging Face is at the forefront of a lot of updates in the NLP space. They have released one groundbreaking NLP library after another in the last few years. Honestly, I have learned and improved my own NLP skills a lot thanks to the work open-sourced by Hugging Face. And today, they’ve released another big update – a brand new version of their popular Tokenizer library.   A Quick Introduction to Tokenization So, what is tokenization? Tokenization is a crucial […]

Read more

Handling Imbalanced Data – Machine Learning, Computer Vision and NLP

This article was published as a part of the Data Science Blogathon. Introduction: In the real world, the data we gather will be heavily imbalanced most of the time. so, what is an Imbalanced Dataset?. The training samples are not equally distributed across the target classes.  For instance, if we take the case of the personal loan classification problem, it is effortless to get the ‘not approved’ data, in contrast to,  ‘approved’ details. As a result, the model is more […]

Read more

Conflicting Bundles: Adapting Architectures Towards the Improved Training of Deep Neural Networks

Designing neural network architectures is a challenging task and knowing which specific layers of a model must be adapted to improve the performance is almost a mystery. In this paper, we introduce a novel theory and metric to identify layers that decrease the test accuracy of the trained models, this identification is done as early as at the beginning of training… In the worst-case, such a layer could lead to a network that can not be trained at all. More […]

Read more

Disentangling Latent Space for Unsupervised Semantic Face Editing

Editing facial images created by StyleGAN is a popular research topic with important applications. Through editing the latent vectors, it is possible to control the facial attributes such as smile, age, textit{etc}… However, facial attributes are entangled in the latent space and this makes it very difficult to independently control a specific attribute without affecting the others. The key to developing neat semantic control is to completely disentangle the latent space and perform image editing in an unsupervised manner. In […]

Read more

CompressAI: a PyTorch library and evaluation platform for end-to-end compression research

This paper presents CompressAI, a platform that provides custom operations, layers, models and tools to research, develop and evaluate end-to-end image and video compression codecs. In particular, CompressAI includes pre-trained models and evaluation tools to compare learned methods with traditional codecs… Multiple models from the state-of-the-art on learned end-to-end compression have thus been reimplemented in PyTorch and trained from scratch. We also report objective comparison results using PSNR and MS-SSIM metrics vs. bit-rate, using the Kodak image dataset as test […]

Read more
1 747 748 749 750 751 928