RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder

Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid […]

Read more

Domain adaptation under structural causal models

Domain adaptation (DA) arises as an important problem in statistical machine learning when the source data used to train a model is different from the target data used to test the model. Recent advances in DA have mainly been application-driven and have largely relied on the idea of a common subspace for source and target data… To understand the empirical successes and failures of DA methods, we propose a theoretical framework via structural causal models that enables analysis and comparison […]

Read more

CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation

Recent research explores incorporating knowledge graphs (KG) into e-commerce recommender systems, not only to achieve better recommendation performance, but more importantly to generate explanations of why particular decisions are made. This can be achieved by explicit KG reasoning, where a model starts from a user node, sequentially determines the next step, and walks towards an item node of potential interest to the user… However, this is challenging due to the huge search space, unknown destination, and sparse signals over the […]

Read more

Learning Deep Interleaved Networks with Asymmetric Co-Attention for Image Restoration

Recently, convolutional neural network (CNN) has demonstrated significant success for image restoration (IR) tasks (e.g., image super-resolution, image deblurring, rain streak removal, and dehazing). However, existing CNN based models are commonly implemented as a single-path stream to enrich feature representations from low-quality (LQ) input space for final predictions, which fail to fully incorporate preceding low-level contexts into later high-level features within networks, thereby producing inferior results… In this paper, we present a deep interleaved network (DIN) that learns how information […]

Read more

Iteratively reweighted greedy set cover

We empirically analyze a simple heuristic for large sparse set cover problems. It uses the weighted greedy algorithm as a basic building block… By multiplicative updates of the weights attached to the elements, the greedy solution is iteratively improved. The implementation of this algorithm is trivial and the algorithm is essentially free of parameters that would require tuning. More iterations can only improve the solution. This set of features makes the approach attractive for practical problems. (read more) PDF

Read more

Gaussian Process Bandit Optimization of theThermodynamic Variational Objective

Achieving the full promise of the Thermodynamic Variational Objective (TVO),a recently proposed variational lower bound on the log evidence involving a one-dimensional Riemann integral approximation, requires choosing a “schedule” ofsorted discretization points. This paper introduces a bespoke Gaussian processbandit optimization method for automatically choosing these points… Our approach not only automates their one-time selection, but also dynamically adaptstheir positions over the course of optimization, leading to improved model learning and inference. We provide theoretical guarantees that our bandit optimizationconverges to […]

Read more

Attentive Clustering Processes

Amortized approaches to clustering have recently received renewed attention thanks to novel objective functions that exploit the expressiveness of deep learning models. In this work we revisit a recent proposal for fast amortized probabilistic clustering, the Clusterwise Clustering Process (CCP), which yields samples from the posterior distribution of cluster labels for sets of arbitrary size using only O(K) forward network evaluations, where K is an arbitrary number of clusters… While adequate in simple datasets, we show that the model can […]

Read more

Fact or Factitious? Contextualized Opinion Spam Detection

In this paper we perform an analytic comparison of a number of techniques used to detect fake and deceptive online reviews. We apply a number machine learning approaches found to be effective, and introduce our own approach by fine-tuning state of the art contextualised embeddings… The results we obtain show the potential of contextualised embeddings for fake review detection, and lay the groundwork for future research in this area. (read more) PDF Abstract  

Read more

FlatNet: Towards Photorealistic Scene Reconstruction from Lensless Measurements

Lensless imaging has emerged as a potential solution towards realizing ultra-miniature cameras by eschewing the bulky lens in a traditional camera. Without a focusing lens, the lensless cameras rely on computational algorithms to recover the scenes from multiplexed measurements… However, the current iterative-optimization-based reconstruction algorithms produce noisier and perceptually poorer images. In this work, we propose a non-iterative deep learning based reconstruction approach that results in orders of magnitude improvement in image quality for lensless reconstructions. Our approach, called $textit{FlatNet}$, […]

Read more

Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

The use of accurate scanning transmission electron microscopy (STEM) image simulation methods require large computation times that can make their use infeasible for the simulation of many images. Other simulation methods based on linear imaging models, such as the convolution method, are much faster but are too inaccurate to be used in application… In this paper, we explore deep learning models that attempt to translate a STEM image produced by the convolution method to a prediction of the high accuracy […]

Read more
1 735 736 737 738 739 906