Inferring learning rules from animal decision-making

How do animals learn? This remains an elusive question in neuroscience… Whereas reinforcement learning often focuses on the design of algorithms that enable artificial agents to efficiently learn new tasks, here we develop a modeling framework to directly infer the empirical learning rules that animals use to acquire new behaviors. Our method efficiently infers the trial-to-trial changes in an animal’s policy, and decomposes those changes into a learning component and a noise component. Specifically, this allows us to: (i) compare […]

Read more

Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

Developmental machine learning studies how artificial agents can model the way children learn open-ended repertoires of skills. Such agents need to create and represent goals, select which ones to pursue and learn to achieve them… Recent approaches have considered goal spaces that were either fixed and hand-defined or learned using generative models of states. This limited agents to sample goals within the distribution of known effects. We argue that the ability to imagine out-of-distribution goals is key to enable creative […]

Read more

How Can I Explain This to You? An Empirical Study of Deep Neural Network Explanation Methods

Explaining the inner workings of deep neural network models have received considerable attention in recent years. Researchers have attempted to provide human parseable explanations justifying why a model performed a specific classification… Although many of these toolkits are available for use, it is unclear which style of explanation is preferred by end-users, thereby demanding investigation. We performed a cross-analysis Amazon Mechanical Turk study comparing the popular state-of-the-art explanation methods to empirically determine which are better in explaining model decisions. The […]

Read more

Evaluating Attribution for Graph Neural Networks

Interpretability of machine learning models is critical to scientific understanding, AI safety, as well as debugging. Attribution is one approach to interpretability, which highlights input dimensions that are influential to a neural network’s prediction… Evaluation of these methods is largely qualitative for image and text models, because acquiring ground truth attributions requires expensive and unreliable human judgment. Attribution has been little studied for graph neural networks (GNNs), a model class of growing importance that makes predictions on arbitrarily-sized graphs. In […]

Read more

Soft Contrastive Learning for Visual Localization

Localization by image retrieval is inexpensive and scalable due to simple mapping and matching techniques. Such localization, however, depends upon the quality of image features often obtained using Contrastive learning frameworks… Most contrastive learning strategies opt for features to distinguish different classes. In the context of localization, however, there is no natural definition of classes. Therefore, images are usually artificially separated into positive and negative classes, with respect to the chosen anchor images, based on some geometric proximity measure. In […]

Read more

Graph Stochastic Neural Networks for Semi-supervised Learning

Graph Neural Networks (GNNs) have achieved remarkable performance in the task of the semi-supervised node classification. However, most existing models learn a deterministic classification function, which lack sufficient flexibility to explore better choices in the presence of kinds of imperfect observed data such as the scarce labeled nodes and noisy graph structure… To improve the rigidness and inflexibility of deterministic classification functions, this paper proposes a novel framework named Graph Stochastic Neural Networks (GSNN), which aims to model the uncertainty […]

Read more

Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters

Gaussian processes (GPs) are flexible priors for modeling functions. However, their success depends on the kernel accurately reflecting the properties of the data… One of the appeals of the GP framework is that the marginal likelihood of the kernel hyperparameters is often available in closed form, enabling optimization and sampling procedures to fit these hyperparameters to data. Unfortunately, point-wise evaluation of the marginal likelihood is expensive due to the need to solve a linear system; searching or sampling the space […]

Read more

Adversarial machine learning and instrumental variables for flexible causal modeling

We are going through a new shift in machine learning (ML), where ML models are increasingly being used to automate decision-making in a multitude of domains: what personalized treatment should be administered to a patient, what discount should be offered to an online customer, and other important decisions that can greatly impact people’s lives. The machine learning revolution was primarily driven by problems that are distant from such decision-making scenarios. The first scenarios include predicting what an image depicts, predicting […]

Read more

A Python Code to Determine Orbital Parameters of Spectroscopic Binaries

We present the open source Python code BinaryStarSolver that solves for the orbital elements of a spectroscopic binary system. Given a time-series of radial velocity measurements, six orbital parameters are determined: the long-term mean, or systemic, radial velocity, the velocity amplitude, the argument of periastron, the eccentricity, the epoch of periastron, and the orbital period referred to by ${{gamma, K, omega, e, T_0, P}}$ respectively… Also returned to the user is the projected length of the semi-major axis, $a_{1}sin(i)$, and […]

Read more

Efficient Scene Compression for Visual-based Localization

Estimating the pose of a camera with respect to a 3D reconstruction or scene representation is a crucial step for many mixed reality and robotics applications. Given the vast amount of available data nowadays, many applications constrain storage and/or bandwidth to work efficiently… To satisfy these constraints, many applications compress a scene representation by reducing its number of 3D points. While state-of-the-art methods use $K$-cover-based algorithms to compress a scene, they are slow and hard to tune. To enhance speed […]

Read more
1 701 702 703 704 705 907