How to Develop a Feature Selection Subspace Ensemble in Python

Random subspace ensembles consist of the same model fit on different randomly selected groups of input features (columns) in the training dataset. There are many ways to choose groups of features in the training dataset, and feature selection is a popular class of data preparation techniques designed specifically for this purpose. The features selected by different configurations of the same feature selection method and different feature selection methods entirely can be used as the basis for ensemble learning. In this […]

Read more

A Gentle Introduction to PyCaret for Machine Learning

PyCaret is a Python open source machine learning library designed to make performing standard tasks in a machine learning project easy. It is a Python version of the Caret machine learning package in R, popular because it allows models to be evaluated, compared, and tuned on a given dataset with just a few lines of code. The PyCaret library provides these features, allowing the machine learning practitioner in Python to spot check a suite of standard machine learning algorithms on […]

Read more

Extreme Gradient Boosting (XGBoost) Ensemble in Python

Extreme Gradient Boosting (XGBoost) is an open-source library that provides an efficient and effective implementation of the gradient boosting algorithm. Although other open-source implementations of the approach existed before XGBoost, the release of XGBoost appeared to unleash the power of the technique and made the applied machine learning community take notice of gradient boosting more generally. Shortly after its development and initial release, XGBoost became the go-to method and often the key component in winning solutions for classification and regression […]

Read more

How to Develop a Light Gradient Boosted Machine (LightGBM) Ensemble

Light Gradient Boosted Machine, or LightGBM for short, is an open-source library that provides an efficient and effective implementation of the gradient boosting algorithm. LightGBM extends the gradient boosting algorithm by adding a type of automatic feature selection as well as focusing on boosting examples with larger gradients. This can result in a dramatic speedup of training and improved predictive performance. As such, LightGBM has become a de facto algorithm for machine learning competitions when working with tabular data for […]

Read more

How to Develop Random Forest Ensembles With XGBoost

The XGBoost library provides an efficient implementation of gradient boosting that can be configured to train random forest ensembles. Random forest is a simpler algorithm than gradient boosting. The XGBoost library allows the models to be trained in a way that repurposes and harnesses the computational efficiencies implemented in the library for training random forest models. In this tutorial, you will discover how to use the XGBoost library to develop random forest ensembles. After completing this tutorial, you will know: […]

Read more

Blending Ensemble Machine Learning With Python

Blending is an ensemble machine learning algorithm. It is a colloquial name for stacked generalization or stacking ensemble where instead of fitting the meta-model on out-of-fold predictions made by the base model, it is fit on predictions made on a holdout dataset. Blending was used to describe stacking models that combined many hundreds of predictive models by competitors in the $1M Netflix machine learning competition, and as such, remains a popular technique and name for stacking in competitive machine learning […]

Read more

Books on Genetic Programming

Genetic Programming (GP) is an algorithm for evolving programs to solve specific well-defined problems. It is a type of automatic programming intended for challenging problems where the task is well defined and solutions can be checked easily at a low cost, although the search space of possible solutions is vast, and there is little intuition as to the best way to solve the problem. This often includes open problems such as controller design, circuit design, as well as predictive modeling […]

Read more

How to Manually Optimize Neural Network Models

Deep learning neural network models are fit on training data using the stochastic gradient descent optimization algorithm. Updates to the weights of the model are made, using the backpropagation of error algorithm. The combination of the optimization and weight update algorithm was carefully chosen and is the most efficient approach known to fit neural networks. Nevertheless, it is possible to use alternate optimization algorithms to fit a neural network model to a training dataset. This can be a useful exercise […]

Read more

Autoencoder Feature Extraction for Classification

Autoencoder is a type of neural network that can be used to learn a compressed representation of raw data. An autoencoder is composed of an encoder and a decoder sub-models. The encoder compresses the input and the decoder attempts to recreate the input from the compressed version provided by the encoder. After training, the encoder model is saved and the decoder is discarded. The encoder can then be used as a data preparation technique to perform feature extraction on raw […]

Read more

Autoencoder Feature Extraction for Regression

Autoencoder is a type of neural network that can be used to learn a compressed representation of raw data. An autoencoder is composed of encoder and a decoder sub-models. The encoder compresses the input and the decoder attempts to recreate the input from the compressed version provided by the encoder. After training, the encoder model is saved and the decoder is discarded. The encoder can then be used as a data preparation technique to perform feature extraction on raw data […]

Read more
1 695 696 697 698 699 911