A Review of 2020 and Trends in 2021 – A Technical Overview of Machine Learning and Deep Learning!

Introduction Data science is not a choice anymore. It is a necessity. 2020 is almost in the books now. What a crazy year from whichever standpoint you look at it. A pandemic raged around the world and yet it failed to dim the light on data science. The thirst to learn more continued unabated in our community and we saw some incredible developments and breakthroughs this year. From OpenAI’s mind-boggling GPT-3 framework to Facebook’s DETR model, this was a year […]

Read more

Issue #112 -Translating markup tags in Neural Machine Translation

17 Dec20 Issue #112 -Translating markup tags in Neural Machine Translation Author: Dr. Patrik Lambert, Senior Machine Translation Scientist @ Iconic Introduction Text to be translated is often encapsulated in structured documents containing inline tags in different formats, such as XML, HTML, Microsoft Word, PDF, XLIFF, etc. Transferring these inline tags into the target language is not a trivial task. However, it is a crucial component of the MT system, because a correct tag placement ensures a good readability of […]

Read more

Research at Microsoft 2020: Addressing the present while looking to the future

Microsoft researchers pursue the big questions about what the world will be like in the future and the role technology will play. Not only do they take on the responsibility of exploring the long-term vision of their research, but they must also be ready to react to the immediate needs of the present. This year in particular, they were asked to use their roles as futurists to address pressing societal challenges. In early 2020, as countries began responding to COVID-19 […]

Read more

Calculus Books for Machine Learning

Knowledge of calculus is not required to get results and solve problems in machine learning or deep learning. However, knowing some calculus will help you in a number of ways, such as in reading mathematical notation in books and papers, and in understanding the terms used to describe fitting models like “gradient,” and in understanding the learning dynamics of models fit via optimization such as neural networks. Calculus is a challenging topic as taught at a university level, but you […]

Read more

Engineering More Reliable Transportation with Machine Learning and AI at Uber

In recent months, Uber Engineering has shared how we use machine learning (ML), artificial intelligence (AI), and advanced technologies to create more seamless and reliable experiences for our users. From introducing a Bayesian neural network architecture that more accurately estimates trip growth, to our real-time features prediction system, and even our own internal ML-as-a-service platform, Michelangelo, these two fields are critical to supporting Uber’s mission of developing reliable transportation solutions for everyone,    

Read more

COTA: Improving Uber Customer Care with NLP & Machine Learning

To facilitate the best end-to-end experience possible for users, Uber is committed to making customer support easier and more accessible. Working toward this goal, Uber’s Customer Obsession team leverages five different customer-agent communication channels powered by an in-house platform that integrates customer support ticket context for easy issue resolution. With hundreds of thousands of tickets surfacing daily on the platform across 400+ cities worldwide, this team must ensure that agents are empowered to    

Read more

Introducing the Uber AI Residency

Uber AI Labs and Uber ATG Toronto are excited to announce the Uber AI Residency, an intensive one-year research training program slated to begin this summer.   Uber has invested substantially in machine learning and artificial intelligence, with groups around the company working on a variety of techniques—deep learning, reinforcement learning, neuroevolution, probabilistic modeling,  natural language processing,    

Read more

Food Discovery with Uber Eats: Building a Query Understanding Engine

Choice is fundamental to the Uber Eats experience. At any given location, there could be thousands of restaurants and even more individual menu items for an eater to choose from. Many factors can influence their choice. For example, the time of day, their cuisine preference, and current mood can all play a role. At Uber Eats, we strive to help eaters find the exact food they want as effortlessly as possible. We approach    

Read more

Scaling Uber’s Customer Support Ticket Assistant (COTA) System with Deep Learning

Earlier this year, we introduced Uber’s Customer Obsession Ticket Assistant (COTA) system, a tool that leverages machine learning and natural language processing (NLP) techniques to recommend support ticket responses (Contact Type and Reply) to customer support agents, with Contact Type being the issue category that the ticket is assigned to and Reply the template agents use to respond. After integrating it into our Customer Support Platform, COTA v1 reduced English-language ticket resolution times by    

Read more

Improving Driver Communication through One-Click Chat, Uber’s Smart Reply System

Imagine standing curbside, waiting for your Uber ride to arrive. On your app, you see that the car is barely moving. You send them a message to find out what’s going on. Unbeknownst to you, your driver-partner is stuck in traffic en route to your pick-up location. They receive your message and want to reply back. This scenario is something Uber driver-partners tell us is a pain point. So we began thinking, what if    

Read more
1 692 693 694 695 696 911