Ensemble Learning Algorithm Complexity and Occam’s Razor

Occam’s razor suggests that in machine learning, we should prefer simpler models with fewer coefficients over complex models like ensembles. Taken at face value, the razor is a heuristic that suggests more complex hypotheses make more assumptions that, in turn, will make them too narrow and not generalize well. In machine learning, it suggests complex models like ensembles will overfit the training dataset and perform poorly on new data. In practice, ensembles are almost universally the type of model chosen […]

Read more

How to Choose an Optimization Algorithm

Optimization is the problem of finding a set of inputs to an objective function that results in a maximum or minimum function evaluation. It is the challenging problem that underlies many machine learning algorithms, from fitting logistic regression models to training artificial neural networks. There are perhaps hundreds of popular optimization algorithms, and perhaps tens of algorithms to choose from in popular scientific code libraries. This can make it challenging to know which algorithms to consider for a given optimization […]

Read more

Matplotlib Line Plot – Tutorial and Examples

Introduction Matplotlib is one of the most widely used data visualization libraries in Python. From simple to complex visualizations, it’s the go-to library for most. In this tutorial, we’ll take a look at how to plot a line plot in Matplotlib – one of the most basic types of plots. Line Plots display numerical values one one axis, and categorical values on the other. They can typically be used in much the same way Bar Plots can be used, though, […]

Read more

Matplotlib Violin Plot – Tutorial and Examples

Introduction There are many data visualization libraries in Python, yet Matplotlib is the most popular library out of all of them. Matplotlib’s popularity is due to its reliability and utility – it’s able to create both simple and complex plots with little code. You can also customize the plots in a variety of ways. In this tutorial, we’ll cover how to plot Violin Plots in Matplotlib. Violin plots are used to visualize data distributions, displaying the range, median, and distribution […]

Read more

How to Upload Files with Python’s requests Library

Introduction Python is supported by many libraries which simplify data transfer over HTTP. The requests library is one of the most popular Python packages as it’s heavily used in web scraping. It’s also popular for interacting with servers! The library makes it easy to upload data in a popular format like JSON, but also makes it easy to upload files as well. In this tutorial, we will take a look at how to upload files using Python’s requests library. The […]

Read more

Seaborn Violin Plot – Tutorial and Examples

Introduction Seaborn is one of the most widely used data visualization libraries in Python, as an extension to Matplotlib. It offers a simple, intuitive, yet highly customizable API for data visualization. In this tutorial, we’ll take a look at how to plot a Violin Plot in Seaborn. Violin plots are used to visualize data distributions, displaying the range, median, and distribution of the data. Violin plots show the same summary statistics as box plots, but they also include Kernel Density […]

Read more

Multilingualism in Natural Language Processing: Targeting Low Resource Indian Languages

Introduction A language is a systematic form of communication that can take a variety of forms. There are approximately 7,000 languages believed to be spoken across the globe. Despite this diversity, the majority of the world’s population speaks only a fraction of these languages. In Spite of such a rich diversity Languages are still evolving across time much like the society we live in. While the English language is uniform, having the distinct status of being the official language of […]

Read more

Machine Translation Weekly 63: Maximum Aposteriori vs. Minimum Bayes Risk decoding

This week I will have a look at the best paper from this year’s COLING that brings an interesting view on inference in NMT models. The title of the paper is “Is MAP Decoding All You Need? The Inadequacy of the Mode in Neural Machine Translation” and its authors are from the University of Amsterdam. NMT models learn the conditional probability of the next word in a target sentence given the source sentence and the previous words in the target […]

Read more

What Is Meta-Learning in Machine Learning?

Meta-learning in machine learning refers to learning algorithms that learn from other learning algorithms. Most commonly, this means the use of machine learning algorithms that learn how to best combine the predictions from other machine learning algorithms in the field of ensemble learning. Nevertheless, meta-learning might also refer to the manual process of model selecting and algorithm tuning performed by a practitioner on a machine learning project that modern automl algorithms seek to automate. It also refers to learning across […]

Read more
1 690 691 692 693 694 911