Semi-Supervised Learning With Label Spreading
Semi-supervised learning refers to algorithms that attempt to make use of both labeled and unlabeled training data. Semi-supervised learning algorithms are unlike supervised learning algorithms that are only able to learn from labeled training data. A popular approach to semi-supervised learning is to create a graph that connects examples in the training dataset and propagates known labels through the edges of the graph to label unlabeled examples. An example of this approach to semi-supervised learning is the label spreading algorithm […]
Read more