Official Pytorch+Lightning Implementation for NU-Wave
NU-Wave
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
Junhyeok Lee, Seungu Han @ MINDsLab Inc., SNU
Paper(arXiv): https://arxiv.org/abs/2104.02321 (Accepted to INTERSPEECH 2021)
Audio Samples: https://mindslab-ai.github.io/nuwave
Official Pytorch+Lightning Implementation for NU-Wave.
Requirements
Preprocessing
Before running our project, you need to download and preprocess dataset to .pt
files
- Download VCTK dataset
- Remove speaker
p280
andp315
- Modify path of downloaded dataset
data:dir
inhparameters.yaml
- run
utils/wav2pt.py
$ python utils/wav2pt.py
Training
- Adjust
hparameters.yaml
, especiallytrain
section.
train:
batch_size: 18 # Dependent on GPU memory size
lr: 0.00003
weight_decay: 0.00
num_workers: 64 # Dependent on CPU cores
gpus: 2 # number of GPUs
opt_eps: 1e-9
beta1: 0.5
beta2: 0.999
- If you want to train with single speaker, use
VCTKSingleSpkDataset
instead