Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation
Hypercorrelation Squeeze for Few-Shot Segmentation
This is the implementation of the paper “Hypercorrelation Squeeze for Few-Shot Segmentation” by Juhong Min, Dahyun Kang, and Minsu Cho. Implemented on Python 3.7 and Pytorch 1.5.1.
Requirements
- Python 3.7
- PyTorch 1.5.1
- cuda 10.1
- tensorboard 1.14
Conda environment settings:
conda create -n hsnet python=3.7
conda activate hsnet
conda install pytorch=1.5.1 torchvision cudatoolkit=10.1 -c pytorch
conda install -c conda-forge tensorflow
pip install tensorboardX
Preparing Few-Shot Segmentation Datasets
Download following datasets:
1. PASCAL-5i
Download PASCAL VOC2012 devkit (train/val data):
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
Download PASCAL VOC2012 SDS extended mask annotations from our [Google Drive].
2. COCO-20i
Download COCO2014 train/val images and annotations:
wget http://images.cocodataset.org/zips/train2014.zip wget http://images.cocodataset.org/zips/val2014.zip wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip
Download COCO2014 train/val annotations