Learning Signed Distance Field for Multi-view Surface Reconstruction

Intro

This is the official implementation for the ICCV 2021 paper Learning Signed Distance Field for Multi-view Surface Reconstruction

In this work, we introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency to optimize the implicit surface representation. More specifically, we apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively. The SDF is directly supervised by geometry from stereo matching, and is refined by optimizing the multi-view feature consistency and the fidelity of rendered images. Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies. Extensive experiments have been conducted on DTU, EPFL and Tanks

 

 

 

To finish reading, please visit source site