Image data augmentation scheduler for albumentations transforms
albu_scheduler
Scheduler for albumentations transforms based on PyTorch schedulers interface
TransformMultiStepScheduler
import albumentations as A
from albu_scheduler import TransformMultiStepScheduler
transform_1 = A.Compose([
A.RandomCrop(width=256, height=256),
A.HorizontalFlip(p=0.5),
A.RandomBrightnessContrast(p=0.2),
])
transform_2 = A.Compose([
A.RandomCrop(width=128, height=128),
A.VerticalFlip(p=0.5),
])
scheduled_transform = TransformMultiStepScheduler(transforms=[transform_1, transform_2],
milestones=[0, 10])
dataset = Dataset(transform=scheduled_transform)
for epoch in range(100):
train(...)
validate(...)
scheduled_transform.step()
TransformSchedulerOnPlateau
from albu_scheduler import TransformSchedulerOnPlateau
scheduled_transform = TransformSchedulerOnPlateau(transforms=[transform_1, transform_2],
mode="max",
patience=5)
dataset = Dataset(transform=scheduled_transform)
for epoch in range(100):
train(...)
score = validate(...)
scheduled_transform.step(score)
git clone https://github.com/KiriLev/albu_scheduler
cd albu_scheduler
make install