How to Prepare Univariate Time Series Data for Long Short-Term Memory Networks

Last Updated on August 5, 2019

It can be hard to prepare data when you’re just getting started with deep learning.

Long Short-Term Memory, or LSTM, recurrent neural networks expect three-dimensional input in the Keras Python deep learning library.

If you have a long sequence of thousands of observations in your time series data, you must split your time series into samples and then reshape it for your LSTM model.

In this tutorial, you will discover exactly how to prepare your univariate time series data for an LSTM model in Python with Keras.

Kick-start your project with my new book Deep Learning for Time Series Forecasting, including step-by-step tutorials and the Python source code files for all examples.

Let’s get started.

How to Prepare Univariate Time Series Data for Long Short-Term Memory Networks

How to Prepare Univariate Time Series Data for Long Short-Term Memory Networks
Photo by Miguel Mendez, some rights reserved.

How to Prepare Time Series Data

Perhaps the most common question I get is how to prepare time series data for supervised learning.

I
To finish reading, please visit source site