How to Prepare Data For Machine Learning
Last Updated on August 16, 2020
Machine learning algorithms learn from data. It is critical that you feed them the right data for the problem you want to solve.
Even if you have good data, you need to make sure that it is in a useful scale, format and even that meaningful features are included.
In this post you will learn how to prepare data for a machine learning algorithm. This is a big topic and you will cover the essentials.
Kick-start your project with my new book Data Preparation for Machine Learning, including step-by-step tutorials and the Python source code files for all examples.
Let’s get started.
Data Preparation Process
The more disciplined you are in your handling of data, the more consistent and better results you are like likely to achieve. The process for getting data ready for a machine learning algorithm can be summarized in three steps:
- Step 1: Select Data
- Step 2: Preprocess Data
- Step 3: Transform
To finish reading, please visit source site