How to Manually Optimize Neural Network Models

Deep learning neural network models are fit on training data using the stochastic gradient descent optimization algorithm.

Updates to the weights of the model are made, using the backpropagation of error algorithm. The combination of the optimization and weight update algorithm was carefully chosen and is the most efficient approach known to fit neural networks.

Nevertheless, it is possible to use alternate optimization algorithms to fit a neural network model to a training dataset. This can be a useful exercise to learn more about how neural networks function and the central nature of optimization in applied machine learning. It may also be required for neural networks with unconventional model architectures and non-differentiable transfer functions.

In this tutorial, you will

 

 

To finish reading, please visit source site