How to Grid Search Hyperparameters for PyTorch Models

The “weights” of a neural network is referred as “parameters” in PyTorch code and it is fine-tuned by optimizer during training. On the contrary, hyperparameters are the parameters of a neural network that is fixed by design and not tuned by training. Examples are the number of hidden layers and the choice of activation functions. Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are notoriously difficult to configure, and a lot of parameters need to be set. On top of that, individual models can be very slow to train.

In this post, you will discover how to use the grid search capability from the scikit-learn Python machine learning library to tune the

 

 

To finish reading, please visit source site