Flexible interface for high performance research using SOTA Transformers
lightning-transformers
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.
Installation
Option 1: from PyPI
pip install lightning-transformers
# instead of: `python train.py ...`, run with:
pl-transformers-train ...
Option 2: from source
git clone https://github.com/PyTorchLightning/lightning-transformers.git
cd lightning-transformers
pip install .
python train.py ...
# the `pl-transformers-train` endpoint is also available!
Quick recipes
Train bert-base-cased on the CARER emotion dataset using the Text Classification task.
python train.py
task=nlp/text_classification
dataset=nlp/text_classification/emotion
See the composed Hydra config used under-the-hood
optimizer:
_target_: torch.optim.AdamW
lr: ${training.lr}
weight_decay: 0.001
scheduler:
_target_: transformers.get_linear_schedule_with_warmup
num_training_steps: -1
num_warmup_steps: 0.1
training:
run_test_after_fit: true
lr: 5.0e-05
output_dir: .
batch_size: 16
num_workers: 16
trainer:
_target_: pytorch_lightning.Trainer
logger: true