Derandomizing Knockoffs

Model-X knockoffs is a general procedure that can leverage any feature importance measure to produce a variable selection algorithm, which discovers true effects while rigorously controlling the number or fraction of false positives. Model-X knockoffs is a randomized procedure which relies on the one-time construction of synthetic (random) variables...

This paper introduces a derandomization method by aggregating the selection results across multiple runs of the knockoffs algorithm. The derandomization step is designed to be flexible and can be adapted to any variable selection base procedure to yield stable decisions without compromising statistical power. When applied to

 

 

To finish reading, please visit source site