Deep learning models for remote sensing applications
Setting up a python environment
-
Follow the instruction in https://docs.conda.io/projects/conda/en/latest/user-guide/install/linux.html for downloading and installing Miniconda
-
Open a terminal in the code directory
-
Create an environment using the .yml file:
conda env create -f deepsatmodels_env.yml
-
Activate the environment:
source activate deepsatmodels
-
Install required version of torch:
conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch-nightly
Datasets
MTLCC dataset (Germany)
Download the dataset (.tfrecords)
The data for Germany can be downloaded from: https://github.com/TUM-LMF/MTLCC
-
clone the repository in a separate directory:
git clone https://github.com/TUM-LMF/MTLCC