Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition

Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Update

We implemented CQD in the KGReasoning framework, a library from SNAP implementing several Complex Query Answering models, which also supports experimenting with the Query2Box and BetaE datasets (in this repo, we only consider the former). Our implementation is available at this link.


This repository contains the official implementation for our ICLR 2021 (Oral, Outstanding Paper Award) paper, Complex Query Answering with Neural Link Predictors:

@inproceedings{
    arakelyan2021complex,
    title={Complex Query Answering with Neural Link Predictors},
    author={Erik Arakelyan and Daniel Daza and Pasquale Minervini and Michael Cochez},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=Mos9F9kDwkz}
}

In this work we present CQD, a method that reuses a pretrained link predictor to

 

 

 

To finish reading, please visit source site