Python tutorials

8 Excellent Pretrained Models to get you Started with Natural Language Processing (NLP)

Introduction Natural Language Processing (NLP) applications have become ubiquitous these days. I seem to stumble across websites and applications regularly that are leveraging NLP in one form or another. In short, this is a wonderful time to be involved in the NLP domain. This rapid increase in NLP adoption has happened largely thanks to the concept of transfer learning enabled through pretrained models. Transfer learning, in the context of NLP, is essentially the ability to train a model on one dataset […]

Read more

How to Get Started with NLP – 6 Unique Methods to Perform Tokenization

Overview Looking to get started with Natural Language Processing (NLP)? Here’s the perfect first step Learn how to perform tokenization – a key aspect to preparing your data for building NLP models We present 6 different ways to perform tokenization on text data   Introduction Are you fascinated by the amount of text data available on the internet? Are you looking for ways to work with this text data but aren’t sure where to begin? Machines, after all, recognize numbers, […]

Read more

How Search Engines like Google Retrieve Results: Introduction to Information Extraction using Python and spaCy

Overview How do search engines like Google understand our queries and provide relevant results? Learn about the concept of information extraction We will apply information extraction in Python using the popular spaCy library – so a lot of hands-on learning is ahead!   Introduction I rely heavily on search engines (especially Google) in my daily role as a data scientist. My search results span a variety of queries – Python code questions, machine learning algorithms, comparison of Natural Language Processing […]

Read more

Hands-on NLP Project: A Comprehensive Guide to Information Extraction using Python

Overview Information extraction is a powerful NLP concept that will enable you to parse through any piece of text Learn how to perform information extraction using NLP techniques in Python   Introduction I’m a bibliophile – I love pouring through books in my free time and extracting as much knowledge as I can. But in today’s information overload age, the way we read stuff has changed. Most of us tend to skip the entire text, whether that’s an article, a […]

Read more

Steps for effective text data cleaning (with case study using Python)

Introduction   The days when one would get data in tabulated spreadsheets are truly behind us. A moment of silence for the data residing in the spreadsheet pockets. Today, more than 80% of the data is unstructured – it is either present in data silos or scattered around the digital archives. Data is being produced as we speak – from every conversation we make in the social media to every content generated from news sources. In order to produce any […]

Read more

Beginners Guide to Topic Modeling in Python

Introduction Analytics Industry is all about obtaining the “Information” from the data. With the growing amount of data in recent years, that too mostly unstructured, it’s difficult to obtain the relevant and desired information. But, technology has developed some powerful methods which can be used to mine through the data and fetch the information that we are looking for. One such technique in the field of text mining is Topic Modelling. As the name suggests, it is a process to […]

Read more

Natural Language Processing for Beginners: Using TextBlob

Introduction Natural Language Processing (NLP) is an area of growing attention due to increasing number of applications like chatbots, machine translation etc. In some ways, the entire revolution of intelligent machines in based on the ability to understand and interact with humans. I have been exploring NLP for some time now.  My journey started with NLTK library in Python, which was the recommended library to get started at that time. NLTK is a perfect library for education and research, it becomes […]

Read more

The Top GitHub Repositories & Reddit Threads Every Data Scientist should know (June 2018)

Introduction Half the year has flown by and that brings us to the June edition of our popular series – the top GitHub repositories and Reddit threads from last month. During the course of writing these articles, I have learned so much about machine learning from either open source codes or invaluable discussions among the top data science brains in the world. What makes GitHub special is not just it’s code hosting and social collaboration features for data scientists. It […]

Read more

The 25 Best Data Science and Machine Learning GitHub Repositories from 2018

Introduction What’s the best platform for hosting your code, collaborating with team members, and also acts as an online resume to showcase your coding skills? Ask any data scientist, and they’ll point you towards GitHub. It has been a truly revolutionary platform in recent years and has changed the landscape of how we host and even do coding. But that’s not all. It acts as a learning tool as well. How, you ask? I’ll give you a hint – open […]

Read more

5 Amazing Deep Learning Frameworks Every Data Scientist Must Know! (with Illustrated Infographic)

Introduction I have been a programmer since before I can remember. I enjoy writing codes from scratch – this helps me understand that topic (or technique) clearly. This approach is especially helpful when we’re learning data science initially. Try to implement a neural network from scratch and you’ll understand a lot of interest things. But do you think this is a good idea when building deep learning models on a real-world dataset? It’s definitely possible if you have days or […]

Read more
1 138 139 140 141 142 181