Python tutorials

Reverse Python Lists: Beyond .reverse() and reversed()

Sometimes you need to process Python lists starting from the last element down to the first—in other words, in reverse order. In general, there are two main challenges related to working with lists in reverse: To meet the first challenge, you can use either .reverse() or a loop that swaps items by index. For the second, you can use reversed() or a slicing operation. In the next sections, you’ll learn about different ways to accomplish both in your code. Reversing […]

Read more

Amazon Product review Sentiment Analysis using BERT

This article was published as a part of the Data Science Blogathon Introduction Natural Language processing, a sub-field of machine learning has gained immense popularity in the last 5 years in both research and industrial applications due to the advancement in the field of deep learning and improvement in the computational power of hardware systems. It is a technique for computers to understand how human languages work involving the usage of computational linguistics and the computer science domain. In recent years, […]

Read more

Part 8: Step by Step Guide to Master NLP – Useful Natural Language Processing Tasks

This article was published as a part of the Data Science Blogathon Introduction This article is part of an ongoing blog series on Natural Language Processing (NLP). Up to part-7 of this series, we completed the most useful concepts in NLP. While going away in this series, let’s first discuss some of the useful tasks of NLP so that you have much clarity about what you can do by learning the NLP. After this part, we will start our discussion on […]

Read more

Implementing Transformers in NLP Under 5 Lines Of Codes

This article was published as a part of the Data Science Blogathon Introduction Today, we will see a gentle introduction to the transformers library for executing state-of-the-art models for complex NLP tasks. Applying state-of-the-art Natural Language Processing models has never been more straightforward. Hugging Face has revealed a compelling library called transformers that allow us to perform and use a broad class of state-of-the-art NLP models in a specific way. Today we are operating to install and use the transformers library […]

Read more

Text Preprocessing made easy!

This article was published as a part of the Data Science Blogathon Introduction We will learn the basics of text preprocessing in this article. Humans communicate using words and hence generate a lot of text data for companies in the form of reviews, suggestions, feedback, social media, etc. A lot of valuable insights can be generated from this text data and hence companies try to apply various machine learning or deep learning models to this data to gain actionable insights. Text […]

Read more

NLP Application: Named Entity Recognition (NER) in Python with Spacy

Natural Language Processing deals with text data. The amount of text data generated these days is enormous. And, this data if utilized properly can bring many fruitful results. Some of the most important Natural Language Processing applications are Text Analytics, Parts of Speech Tagging, Sentiment Analysis, and Named Entity Recognition. The vast amount of text data contains a huge amount of information. An important aspect of analyzing these text data is the identification of Named Entities. What is a Named […]

Read more

A Gentle Introduction To MuRIL : Multilingual Representations for Indian Languages

This article was published as a part of the Data Science Blogathon “MuRIL is a starting point of what we believe can be the next big evolution for Indian language understanding. We hope it will prove to be a better foundation for researchers, startups, students, and anyone else interested in building Indian language technologies” said Partha Talukdar, Research Scientist, Google Research India. What is MuRIL? MuRIL, short for Multilingual Representations for Indian Languages, is none other than a free and open-source […]

Read more

TS-SS similarity for Answer Retrieval from Document in Python

This article was published as a part of the Data Science Blogathon Introduction This article focuses on answer retrieval from a document by using a similarity algorithm. This task falls under Natural Language Processing which is a subset of Deep Learning. In this article, we will be understanding why do we require better techniques and what are the drawbacks of using naive algorithms. Moreover, we will be implementing a similarity-based technique for answer retrieval from the document. This article is a […]

Read more

Text Preprocessing in NLP with Python codes

This article was published as a part of the Data Science Blogathon Introduction Natural Language Processing (NLP) is a branch of Data Science which deals with Text data. Apart from numerical data, Text data is available to a great extent which is used to analyze and solve business problems. But before using the data for analysis or prediction, processing the data is important. To prepare the text data for the model building we perform text preprocessing. It is the very first […]

Read more

Why and how to use BERT for NLP Text Classification?

This article was published as a part of the Data Science Blogathon Introduction NLP or Natural Language Processing is an exponentially growing field. In the “new normal” imposed by covid19, a significant proportion of educational material, news, discussions happen through digital media platforms. This provides more text data available to work upon! Originally, simple RNNS (Recurrent Neural Networks) were used for training text data. But in recent years there have been many new research publications that provide state-of-the-art results. One of […]

Read more
1 114 115 116 117 118 181