Articles About Natural Language Processing

Multilingualism in Natural Language Processing targeting low resource Indian languages

Introduction Language is a systematic form of communication that can take a variety of forms. There are approximately 7,000 languages believed to be spoken across the globe. Despite this diversity, the majority of the world’s population speaks only a fraction of these languages. In Spite of such a rich diversity Languages are still evolving across time much like the society we live in. While the English language is uniform, having the distinct status of being the official language of multiple […]

Read more

CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs

Abstract Cross-lingual document alignment aims to identify pairs of documents in two distinct languages that are of comparable content or translations of each other. In this paper, we exploit the signals embedded in URLs to label web documents at scale with an average precision of 94.5% across different language pairs. We mine sixty-eight snapshots of the Common Crawl corpus and identify web document pairs that are translations of each other. We release a new web dataset consisting of over 392 […]

Read more

Dense Passage Retrieval for Open-Domain Question Answering

November 16, 2020 By: Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih Abstract Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder […]

Read more

Measuring the Similarity of Grammatical Gender Systems by Comparing Partitions

Abstract A grammatical gender system divides a lexicon into a small number of relatively fixed grammatical categories. How similar are these gender systems across languages? To quantify the similarity, we define gender systems extensionally, thereby reducing the problem of comparisons between languages’ gender systems to cluster evaluation. We borrow a rich inventory of statistical tools for cluster evaluation from the field of community detection (Driver and Kroeber, 1932; Cattell, 1945), that enable us to craft novel information-theoretic metrics for measuring […]

Read more

An Imitation Game for Learning Semantic Parsers from User Interaction

November 16, 2020 By: Ziyu Yao, Yiqi Tang, Wen-tau Yih, Huan Sun, Yu Su Abstract Despite the widely successful applications, building a semantic parser is still a tedious process in practice with challenges from costly data annotation and privacy risks. We suggest an alternative, human-in-the-loop methodology for learning semantic parsers directly from users. A semantic parser should be introspective of its uncertainties and prompt for user demonstrations when uncertain. In doing so it also gets to imitate the user behavior […]

Read more

Generating Fact Checking Briefs

Abstract Fact checking at scale is difficult—while the number of active fact checking websites is growing, it remains too small for the needs of the contemporary media ecosystem. However, despite good intentions, contributions from volunteers are often error-prone, and thus in practice restricted to claim detection. We investigate how to increase the accuracy and efficiency of fact checking by providing information about the claim before performing the check, in the form of natural language briefs. We investigate passage-based briefs, containing […]

Read more

Measuring Systematic Generalization in Neural Proof Generation with Transformers

November 27, 2020 By: Nicolas Gontier, Koustuv Sinha, Siva Reddy, Christopher Pal Abstract We are interested in understanding how well Transformer language models (TLMs) can perform reasoning tasks when trained on knowledge encoded in the form of natural language. We investigate systematic generalization abilities on an inductive logical reasoning task in natural language, which involves reasoning over relationships between entities grounded in first-order logical proofs. Specifically, we perform soft theorem-proving by leveraging TLMs to generate logical proofs represented in natural […]

Read more

Deep Transformers with Latent Depth

Abstract The Transformer model has achieved state-of-the-art performance in many sequence modeling tasks. However, how to leverage model capacity with large or variable depths is still an open challenge. We present a probabilistic framework to automatically learn which layer(s) to use by learning the posterior distributions of layer selection. As an extension of this framework, we propose a novel method to train one shared Transformer network for multilingual machine translation with different layer selection posteriors for each language pair. The […]

Read more

Resource Constrained Dialog Policy Learning via Differentiable Inductive Logic Programming

Abstract Motivated by the needs of resource constrained dialog policy learning, we introduce dialog policy via differentiable inductive logic (DILOG). We explore the tasks of one-shot learning and zero-shot domain transfer with DILOG on SimDial and MultiWoZ. Using a single representative dialog from the restaurant domain, we train DILOG on the SimDial dataset and obtain 99+% in-domain test accuracy. We also show that the trained DILOG zero-shot transfers to all other domains with 99+% accuracy, proving the suitability of DILOG […]

Read more

A Review of 2020 and Trends in 2021 – A Technical Overview of Machine Learning and Deep Learning!

Introduction Data science is not a choice anymore. It is a necessity. 2020 is almost in the books now. What a crazy year from whichever standpoint you look at it. A pandemic raged around the world and yet it failed to dim the light on data science. The thirst to learn more continued unabated in our community and we saw some incredible developments and breakthroughs this year. From OpenAI’s mind-boggling GPT-3 framework to Facebook’s DETR model, this was a year […]

Read more
1 42 43 44 45 46 71