Machine Translation Weekly 63: Maximum Aposteriori vs. Minimum Bayes Risk decoding
This week I will have a look at the best paper from this year’s COLING that brings an interesting view on inference in NMT models. The title of the paper is “Is MAP Decoding All You Need? The Inadequacy of the Mode in Neural Machine Translation” and its authors are from the University of Amsterdam. NMT models learn the conditional probability of the next word in a target sentence given the source sentence and the previous words in the target […]
Read more