Highlights from Machine Translation and Multilinguality in February 2023
There were plenty of interesting pre-prints on arXiv in February. Here is a brief summary of three that I think are cool but could get lost in the hundreds of papers that went public. The unreasonable effectiveness of few-shot learning for machine translation Folks from Google experimented with few-shot MT based on language-model. Instead of using one of the cool huge language models we all know, they train their smaller ones. They prepare specific bi- and tri-lingual LMs (8B parameters; […]
Read more