Articles About Machine Learning

Learning Inter-Modal Correspondence and Phenotypes from Multi-Modal Electronic Health Records

Non-negative tensor factorization has been shown a practical solution to automatically discover phenotypes from the electronic health records (EHR) with minimal human supervision. Such methods generally require an input tensor describing the inter-modal interactions to be pre-established; however, the correspondence between different modalities (e.g., correspondence between medications and diagnoses) can often be missing in practice… Although heuristic methods can be applied to estimate them, they inevitably introduce errors, and leads to sub-optimal phenotype quality. This is particularly important for patients […]

Read more

Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM

It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals. Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis… In this paper, we proposed, implemented, and compared an automated system using two different frameworks of the combination of convolutional neural network (CNN) and long-short term memory (LSTM) for classifying normal sinus signals, atrial fibrillation, and other noisy signals. The dataset we used is from the MIT-BIT Arrhythmia […]

Read more

Biomedical Named Entity Recognition at Scale

Named entity recognition (NER) is a widely applicable natural language processing task and building block of question answering, topic modeling, information retrieval, etc. In the medical domain, NER plays a crucial role by extracting meaningful chunks from clinical notes and reports, which are then fed to downstream tasks like assertion status detection, entity resolution, relation extraction, and de-identification… Reimplementing a Bi-LSTM-CNN-Char deep learning architecture on top of Apache Spark, we present a single trainable NER model that obtains new state-of-the-art […]

Read more

Gaussian RAM: Lightweight Image Classification via Stochastic Retina-Inspired Glimpse and Reinforcement Learning

Previous studies on image classification have mainly focused on the performance of the networks, not on real-time operation or model compression. We propose a Gaussian Deep Recurrent visual Attention Model (GDRAM)- a reinforcement learning based lightweight deep neural network for large scale image classification that outperforms the conventional CNN (Convolutional Neural Network) which uses the entire image as input… Highly inspired by the biological visual recognition process, our model mimics the stochastic location of the retina with Gaussian distribution. We […]

Read more

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

We propose a real-time intermediate flow estimation algorithm (RIFE) for video frame interpolation (VFI). Most existing methods first estimate the bi-directional optical flows, and then linearly combine them to approximate intermediate flows, leading to artifacts around motion boundaries… We design an intermediate flow model named IFNet that can directly estimate the intermediate flows from coarse to fine. We then warp the input frames according to the estimated intermediate flows and employ a fusion process to compute final results. Based on […]

Read more

Same Object, Different Grasps: Data and Semantic Knowledge for Task-Oriented Grasping

Despite the enormous progress and generalization in robotic grasping in recent years, existing methods have yet to scale and generalize task-oriented grasping to the same extent. This is largely due to the scale of the datasets both in terms of the number of objects and tasks studied… We address these concerns with the TaskGrasp dataset which is more diverse both in terms of objects and tasks, and an order of magnitude larger than previous datasets. The dataset contains 250K task-oriented […]

Read more

A Bayesian Nonparametric model for textural pattern heterogeneity

Cancer radiomics is an emerging discipline promising to elucidate lesion phenotypes and tumor heterogeneity through patterns of enhancement, texture, morphology, and shape. The prevailing technique for image texture analysis relies on the construction and synthesis of Gray-Level Co-occurrence Matrices (GLCM)… Practice currently reduces the structured count data of a GLCM to reductive and redundant summary statistics for which analysis requires variable selection and multiple comparisons for each application, thus limiting reproducibility. In this article, we develop a Bayesian multivariate probabilistic […]

Read more

BeyondPlanck I. Global Bayesian analysis of the Planck Low Frequency Instrument data

We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of companion papers that describe each result in fuller detail. Building directly on experience from ESA’s Planck mission, we implement a complete end-to-end Bayesian analysis framework for the Planck Low Frequency Instrument (LFI) observations… The primary product is a joint posterior distribution P(omega|d), where omega represents the set of all free instrumental (gain, correlated noise, bandpass etc. ), astrophysical (synchrotron, […]

Read more

Zero-Pair Image to Image Translation using Domain Conditional Normalization

In this paper, we propose an approach based on domain conditional normalization (DCN) for zero-pair image-to-image translation, i.e., translating between two domains which have no paired training data available but each have paired training data with a third domain. We employ a single generator which has an encoder-decoder structure and analyze different implementations of domain conditional normalization to obtain the desired target domain output… The validation benchmark uses RGB-depth pairs and RGB-semantic pairs for training and compares performance for the […]

Read more

Scribble-Supervised Semantic Segmentation by Random Walk on Neural Representation and Self-Supervision on Neural Eigenspa

Scribble-supervised semantic segmentation has gained much attention recently for its promising performance without high-quality annotations. Many approaches have been proposed… Typically, they handle this problem to either introduce a well-labeled dataset from another related task, turn to iterative refinement and post-processing with the graphical model, or manipulate the scribble label. This work aims to achieve semantic segmentation supervised by scribble label directly without auxiliary information and other intermediate manipulation. Specifically, we impose diffusion on neural representation by random walk and […]

Read more
1 96 97 98 99 100 226