Articles About Machine Learning

Dataset for eye-tracking tasks

In recent years many different deep neural networks were developed, but due to a large number of layers in deep networks, their training requires a long time and a large number of datasets. Today is popular to use trained deep neural networks for various tasks, even for simple ones in which such deep networks are not required… The well-known deep networks such as YoloV3, SSD, etc. are intended for tracking and monitoring various objects, therefore their weights are heavy and […]

Read more

Natural Language Processing Made Easy – using SpaCy (​in Python)

Introduction Natural Language Processing is one of the principal areas of Artificial Intelligence. NLP plays a critical role in many intelligent applications such as automated chat bots, article summarizers, multi-lingual translation and opinion identification from data. Every industry which exploits NLP to make sense of unstructured text data, not just demands accuracy, but also swiftness in obtaining results. Natural Language Processing is a capacious field, some of the tasks in nlp are – text classification, entity detection, machine translation, question […]

Read more

A Comprehensive Guide to Understand and Implement Text Classification in Python

Improving Text Classification Models While the above framework can be applied to a number of text classification problems, but to achieve a good accuracy some improvements can be done in the overall framework. For example, following are some tips to improve the performance of text classification models and this framework. 1. Text Cleaning : text cleaning can help to reducue the noise present in text data in the form of stopwords, punctuations marks, suffix variations etc. This article can help to understand how […]

Read more

Top 5 Machine Learning GitHub Repositories & Reddit Discussions (October 2018)

Introduction “Should I use GitHub for my projects?” – I’m often asked this question by aspiring data scientists. There’s only one answer to this – “Absolutely!”. GitHub is an invaluable platform for data scientists looking to stand out from the crowd. It’s an online resume for displaying your code to recruiters and other fellow professionals. The fact that GitHub hosts open-source projects from the top tech behemoths like Google, Facebook, IBM, NVIDIA, etc. is what adds to the gloss of […]

Read more

How to use a Machine Learning Model to Make Predictions on Streaming Data using PySpark

Overview Streaming data is a thriving concept in the machine learning space Learn how to use a machine learning model (such as logistic regression) to make predictions on streaming data using PySpark We’ll cover the basics of Streaming Data and Spark Streaming, and then dive into the implementation part   Introduction Picture this – every second, more than 8,500 Tweets are sent, more than 900 photos are uploaded on Instagram, more than 4,200 Skype calls are made, more than 78,000 […]

Read more

Learning sparse codes from compressed representations with biologically plausible local wiring constraints

Sparse coding is an important method for unsupervised learning of task-independent features in theoretical neuroscience models of neural coding. While a number of algorithms exist to learn these representations from the statistics of a dataset, they largely ignore the information bottlenecks present in fiber pathways connecting cortical areas… For example, the visual pathway has many fewer neurons transmitting visual information to cortex than the number of photoreceptors. Both empirical and analytic results have recently shown that sparse representations can be […]

Read more

Practical Low-Rank Communication Compression in Decentralized Deep Learning

Lossy gradient compression has become a practical tool to overcome the communication bottleneck in centrally coordinated distributed training of machine learning models. However, algorithms for decentralized training with compressed communication over arbitrary connected networks have been more complicated, requiring additional memory and hyperparameters… We introduce a simple algorithm that directly compresses the model differences between neighboring workers using low-rank linear compressors. We prove that our method does not require any additional hyperparameters, converges faster than prior methods, and is asymptotically […]

Read more

Inverting Gradients – How easy is it to break privacy in federated learning?

The idea of federated learning is to collaboratively train a neural network on a server. Each user receives the current weights of the network and in turns sends parameter updates (gradients) based on local data… This protocol has been designed not only to train neural networks data-efficiently, but also to provide privacy benefits for users, as their input data remains on device and only parameter gradients are shared. But how secure is sharing parameter gradients? Previous attacks have provided a […]

Read more

Inferring learning rules from animal decision-making

How do animals learn? This remains an elusive question in neuroscience… Whereas reinforcement learning often focuses on the design of algorithms that enable artificial agents to efficiently learn new tasks, here we develop a modeling framework to directly infer the empirical learning rules that animals use to acquire new behaviors. Our method efficiently infers the trial-to-trial changes in an animal’s policy, and decomposes those changes into a learning component and a noise component. Specifically, this allows us to: (i) compare […]

Read more

Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

Developmental machine learning studies how artificial agents can model the way children learn open-ended repertoires of skills. Such agents need to create and represent goals, select which ones to pursue and learn to achieve them… Recent approaches have considered goal spaces that were either fixed and hand-defined or learned using generative models of states. This limited agents to sample goals within the distribution of known effects. We argue that the ability to imagine out-of-distribution goals is key to enable creative […]

Read more
1 82 83 84 85 86 226